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Radiomics is a new word for the field of radiology, deriving from a combination of “ra-
dio”, meaning medical images, and “omics”, indicating the various fields like genomics 
and proteomics that contribute to our understanding of various medical conditions. 

Radiomics is simply the extraction of a high number of features from medical images (1). 
The typical radiomic analysis includes the evaluation of size, shape, and textural features 
that have useful spatial information on pixel or voxel distribution and patterns (1). These 
radiomic features are further used in creating statistical models with an intent to provide 
support for individualized diagnosis and management in a variety of organs and systems 
such as brain (2, 3), pituitary gland (4, 5), lung (6), heart (7), liver (8), kidney (9–12), adrenal 
gland (13, 14), and prostate (15).

Artificial intelligence (AI) is broadly a set of systems that can accurately perform inferences 
from a large amount of data, based on advanced computational algorithms (16). Just as in 
humans, learning is a fundamental need for any intelligent behavior of machines. Hence, 
the AI is a general concept encompassing different learning algorithms, namely, machine 
learning (ML) and lately very popular deep learning algorithms (Fig. 1) (17, 18). Although 
the concept of AI goes back to 1950s, it has gained momentum since 2000 because of the 
advances in computational power (19–21). Today, AI technology provides numerous indis-
pensable tools for intelligent data analysis for solving several medical problems, particularly 
for diagnostic issues (17, 18, 21–24). 

Relationship between radiomics and AI are mutual. Due to its ever-growing high-dimen-
sional nature, the field of radiomics needs much more powerful analytic tools, and AI ap-
pears to be a potential candidate for this purpose, with its extreme capabilities. On the oth-
er hand, in medical image analysis, AI applications inevitably need the radiomics because 
the metrics that are used to train and build the AI models are delivered through radiomic 
approaches, specifically, feature extraction and feature engineering techniques. 
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and AI; second, to encourage the radiologists to get involved in these ever-developing fields; 
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In this paper, we reviewed the radiomics 
and AI with a rather practical point of view. 
Our goal was three-fold: first, to familiarize 
the radiologists with the radiomics and AI; 
second, to encourage them to get involved 
in these ever-developing fields; and, third, 
to provide a set of recommendations and 
tips for good practice. 

Critical questions and answers
Why do we need radiomics?

In conventional radiology practice, ex-
cept for a few measurements like size and 
volume, the imaging data sets are gen-
erally evaluated visually or qualitatively. 
This approach not only involves intra- and 
interobserver variability but also leaves a 
very large amount of hidden data in the 
medical images unused. A common clini-
cal scenario for explaining the need for ra-
diomics would be possible with imagining 
two patients with tumors with rather dif-
ferent qualitative features like size, shape, 
borders, and heterogeneity. The survival 
of the patients in this scenario will prob-
ably be different even though the tumors 
have histopathologically similar features. 
If one could have predicted the prognosis 
of the patients before any intervention or 
treatment, the management of the pa-
tients would be different. This is actually 
called precision medicine. In precision 
medicine, the patients that belong to dif-
ferent subtypes need to be identified for 
achieving better outcomes. Radiomics can 
be considered an objective way to achieve 
these goals. Using either conventional (1) 

or advanced imaging techniques (25, 26), 
the primary purpose of the radiomics is to 
extract as much and meaningful hidden 
objective data as possible to be used in 
decision support. 

Why do we need AI in radiomics?
The main reason for using AI in radiomics 

is its better capability of handling a massive 
amount of data compared with the tradi-
tional statistical methods. AI algorithms are 
essentially used for classification problems. 
These algorithms basically learn the data 
provided by analyzing patterns and then 
make predictions on unseen data sets to 
check whether these patterns are correct or 
not. AI algorithms are not only able to ana-
lyze the numeric data provided by the pre-
defined or hand-crafted radiomic features 
but also able to directly analyze the images 
in order to automatically design its own ra-
diomic features (17, 27–30). This very popu-
lar and advanced subset of AI is called deep 
learning (28). Deep learning algorithms are 
also able to perform segmentation tasks it-
self, without any need for human interven-
tion (31). 

Is it possible to get involved in radiomics 
as a radiologist?

Yes, that is perfectly possible. Collec-
tive work is of paramount importance be-
cause the workflow of radiomics covers a 
wide range of consecutive steps including 
preprocessing, segmentation, feature ex-
traction, and data handling (1). Depending 
on the software used, each step might re-
quire a massive amount of time and work-
load. Authors think that there would be at 
least three ways to get involved in radiom-
ics in any subfield of medical imaging.

First, the simplest way would be to look 
for the paid software programs. Those kinds 
of programs are easy to use because the 
providers simplified almost all radiomic 
pipeline. Some of those could provide some 
statistical tools for further analysis as well.

Second, a little bit harder way would be to 
use free software programs that allow radio-
mic feature extraction with a graphical user 
interface (GUI). Most popular software pro-
grams for hand-crafted feature extraction 
are MaZda (32), LIFEx (33), PyRadiomics (34), 
and IBEX (35). Nonetheless, even though the 
authors encourage the radiologists starting 

Main points

• Radiomics is simply the extraction of a high 
number of quantitative features from medi-
cal images.

• Artificial intelligence is broadly a set of ad-
vanced computational algorithms that can 
accurately perform predictions for decision 
support.

• Primary purpose of radiomics and artificial 
intelligence is to extract and analyze as much 
and meaningful hidden quantitative imaging 
data as possible to be used in objective de-
cision support for any medical condition of 
interest.

• Radiomics and artificial intelligence are vast 
fields with a wide range of different method-
ologic aspects, leading to a lack of consen-
sus in many steps, which is a challenge that 
needs to be overcome in the near future. 

Figure 1. Venn diagram of the concepts related to artificial intelligence (AI). AI is the simulation 
of human intelligence processes like learning, reasoning, and self-correction by the machines, 
particularly the computer systems. AI is a broad concept that covers many machine learning 
techniques such as k-nearest neighbors, support vector machine, decision trees, and neural networks. 
Neural networks include various algorithms ranging from very simple to complex architectures, such 
as multi-layer perceptron and deep learning or convolutional neural networks.

Artificial intelligence

Machine learning

Neural networks

Deep learning



with these software programs, they also 
highly recommend being cautious because 
the pipeline is not well established in such 
programs and there are many parameters 
to be dealt with such as establishing discret-
ization levels, normalization approach, re- 
sampling, and clearing the non-radiomic 
data from final feature table. Furthermore, 
there are also software programs for deep 
feature extraction with GUI directly from 
images within the layers of neural network 
such as Nvidia’s Digits (https://developer.
nvidia.com/digits) and Deep Learning Stu-
dio (https://deepcognition.ai/).

Third, the hardest way would be to use 
software programs that allow feature ex-
traction if the user has coding skills or at 
least familiarity with coding. Most popular 
platforms for this purpose are MATLAB and 
Python platforms, which have massive li-
braries for both hand-crafted and deep fea-
ture extraction.

Is it possible to get involved in AI as a 
radiologist?

Yes, that is perfectly possible as well. 
Authors think that there would be at least 
three ways to get involved in AI as a radiol-
ogist without formal training about data or 
computer science. 

First, the simplest way would be to find or 
to be a part of a data science collaboration 
about medical imaging. Data or computer 
scientists need meaningful clinical perspec-
tives to provide the unmet need for AI in 
radiology. 

Second, a little bit harder but not the 
hardest way would be to get some conven-
tional statistical basis and to learn how to 
use data mining software programs that 
allow performing AI tasks without knowing 
how to code. There are many free software 
programs for this purpose such as Waika-
to environment for knowledge analysis 
(WEKA) software (36), Orange data mining 
software (37), RapidMiner (https://rapid-
miner.com/), Rattle in R statistics (38), and 
Deep learning studio (https://deepcogni-
tion.ai/). All of these software programs 
have a GUI to easily implement a wide 
range of AI tasks covering the very simple 
to very complex ML algorithms. Also, some 
of those software programs have options 
for integration to other common environ-
ments (e.g., Python and R) for much more 
advanced features. Being radiologists, the 
authors recommend starting first with 

WEKA or Orange software-like programs 
considering their simplicity and ease in 
using the interface. On the other hand, it 
should be kept in mind that not every soft-
ware is capable to complete every task. For 
instance, in our personal experience, WEKA 
is enough to perform many ML tasks, but 
it has limited and poor visual capabilities 
unless it is integrated with the other envi-
ronments.

Third, the hardest way is, of course, to 
start with learning how to code. Although 
it usually seems difficult and daunting to 
learn to code from scratch, there are very 
simple languages to start with, such as Py-
thon language, which is an object-oriented 
language with an intuitive and easy to un-
derstand syntax, being rather similar to hu-
man language. Learning Python language 
provides various opportunities to use 
many available AI libraries such as Google’s 
TensorFlow even for users with low-level 
programming skills. There are extensive re-
sources to learn to code for AI implementa-
tion like books, websites, and online cours-
es (e.g., Coursera, Udemy, edX) at a low cost.

What about the future of radiologists 
considering the advances in AI?

As it can be seen in recent world-wide an-
nual radiology meetings like RSNA (Radio-
logical Society of North America) and ECR 
(European Congress of Radiology), there 
is an evident shift of the overall theme to 
radiomics and AI, which is much more ap-
parent than any other medical field. Both 
radiomics and AI have been getting atten-
tion for their remarkable success in various 
radiological tasks, which has been met with 
anxiety by most of the radiologists due to 
the fear of replacement by the intelligent 
machines. Considering ever-developing 
advances in computational power and avail-
ability of large data sets, the marriage of hu-
mans and machines in future clinical prac-
tice seems inevitable. Therefore, regardless 
of their feelings, the radiologists should be 
familiar with these concepts. Authors be-
lieve that the radiomics with AI might be 
helpful for the radiologists by completing 
or facilitating certain tasks to some extent, 
reducing the heavy workload of the radiolo-
gists, which actually would make the radiol-
ogists much more intelligent than ever by 
providing an opportunity to deal with only 
the more complex and sophisticated radio-
logical problems in their practice.

Radiomic workflow
To provide a wider perspective to the 

readers, over-simplified radiomic pipelines 
are simply given in Fig. 2 before going into 
a detailed review of each step.

Image acquisition
Radiomics can be applied to various 

imaging techniques including computed 
tomography, magnetic resonance imag-
ing (MRI), positron-emission tomography, 
X-ray, and ultrasonography. There are a 
wide variety of acquisition techniques cur-
rently in use. Besides, different vendors 
offer various image reconstruction meth-
ods that are customized at each institution 
depending on the need. This is not only a 
problem in multi-institutional scale but also 
a problem in the same institution. Although 
it is usually underestimated or ignored in vi-
sual analysis, the use of different acquisition 
and image processing techniques might 
have a great impact in radiomics because 
it is a process on pixel or voxel level, which 
may affect image noise and in turn texture, 
possibly reflecting a different underlying 
pathology (39, 40). These differences might 
also lead to inconsistent results in radiomic 
analyses in independent data sets, which is 
one of the major problems of the radiom-
ics (39, 40). From a realistic perspective, we 
should acknowledge that it is not possible 
to bring all the image acquisition proto-
cols into uniformity. On the other hand, 
our primary goal should be to find the best 
technical pipeline to create the most stable 
and accurate radiomic models that are even 
applicable to the images obtained with dif-
ferent protocols. To do this, each imaging 
modality must be taken care of considering 
their own peculiarities.

Preprocessing
Radiomics has a dependency on some 

image parameters. The most important of 
those that need to be dealt with in any im-
aging modality are the size of the pixel or 
voxels (41), number of the gray levels (41), 
and range of gray level values (42). In addi-
tion, signal intensity nonuniformity should 
be removed in MRI (43, 44). There are nu-
merous methods for dealing with these 
dependencies. For the normalization of the 
gray level values, the ±3sigma normaliza-
tion is the most widely used method (45). 
Pixel resampling can be done using various 
interpolation methods such as linear and 
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cubic B-spline interpolation (46). Different 
software programs offer different discret-
ization methods, for instance, fixed bin 
size and fixed bin number (47). N3 and N4 
bias field correction algorithms are widely 
established techniques for avoiding sig-
nal intensity nonuniformity (44). Although 
some of these preprocessing steps are in-
cluded in the radiomic software programs, 
it should be known that many user-friendly 
open-source tools exist for advanced radio-
logic imaging data preprocessing such as 
ImageJ, MIPAV (Medical Image Processing, 
Analysis, and Visualization), and 3DSlicer.

Segmentation
The most critical step in radiomics is con-

sidered to be the segmentation process 
because the radiomic features are most-
ly extracted from the segmented areas 
or volumes. The segmentation process is 
challenging because of the fact that some 
tumors have a very unclear margin. The 
manual segmentation is considered the 
gold standard provided that it is performed 
by experts, which is very time-consuming. 
On the other hand, manual segmentation 
is subject to intra- and inter-reader variabil-
ity (48), leading to radiomic feature repro-
ducibility problems. To avoid this variabil-

ity, a few automatic and semi-automatic 
methods have been described as follows: 
active contour (snake) methods (49), level 
set methods (50), region-based methods 
(51), graph-based methods (52), and deep 
learning-based methods (53). Although the 
automatic segmentation techniques are 
objective, they are prone to error, especially 
when images have artifacts and noise and 
lesions of interest are very heterogeneous. 

Feature extraction
Considering the definition of radiom-

ic features, most of them are not part of 
the radiologists’ lexicon. In this context, it 
should be kept in mind that radiomics is a 
hypothesis-free approach. This means that 
there is no a priori hypothesis made about 
the clinical relevance of the features, which 
are computed automatically by image anal-
ysis algorithms created by experts. The 
purpose of the approach is to discover pre-
viously unseen image patterns using these 
agnostic or non-semantic features and to 
perform classification based on the most 
discriminative ones, this is also named as 
the development of radiomic signature. Au-
thors' view on the subject is also the same. 
As long as the models are validated on in-
dependent data sets, radiomics might be a 

valid approach, regardless of the individual 
meaning of the features. In summary, the 
whole process means that except for some 
of the histogram or first-order features, if 
one attempts to define each radiomic fea-
ture in a clinical context, it probably results 
in failure.

There are two categories of radiom-
ic features. The first one is predefined or 
hand-crafted features, being created by 
human image processing experts. These 
are also called as traditional features. Some 
of the traditional radiomic features (i.e., 
predefined or hand-crafted features) are 
presented in Table 1. The second one is 
deep features, which has gained populari-
ty nowadays because some deep learning 
algorithms design and select the features 
themselves for a given task within its layers, 
without need for any human intervention 
(28). Some recent works have also suggest-
ed the superiority of the deep features to 
traditional features (54, 55). 

Radiomic features can be extracted using 
different image types, which contributes to 
the high-dimensionality of the radiomics. 
Commonly encountered image types are 
presented in Fig. 3.

Radiomic data handling
Data preparation

Before further analysis of the radiomic 
data obtained using AI algorithms, certain 
conditions need to be addressed. Possible 
data preparation steps would be as follows: 
feature scaling, discretization, continuiza-
tion, randomization, over-sampling, un-
der-sampling, and so on. 

Considering their major impact in AI-
based classification performance, the 
authors recommend that at least feature 
scaling and randomization need to be con-
sidered in every scientific work. 

Radiomic feature values are produced 
in different scales, which highly interferes 
with the stability of inner parameters of the 
AI algorithms, for instance, weights and bi-
ases of the artificial neural network. Feature 
scaling means changing the numeric values 
to a common scale, avoiding significant 
distortions in the ranges of values. Feature 
scaling involves two broad categories: nor-
malization and standardization. The choice 
of the technique depends on the assump-
tions about the distribution of the data that 
AI algorithms make that will be used in fur-
ther analysis.

Figure 2. Over-simplified representation of traditional and deep learning-based radiomics. 
Representative CT and MRI images in Fig. 2 and Fig. 3 are obtained from the Cancer Imaging Archive 
(TCIA), specifically from the collections of TCGA-KIRC (72, 73) and LGG-1p19qDeletion (73–75), which 
are publicly and freely available.  



Randomization of the data set, on the 
other hand, is another important factor in 
creating models because the performance 
of the ML algorithms is influenced by the 
initiation or seeding factors. If it is not ap-
plied before model creation, some patterns 
in the data set might strongly influence the 
results.

Class balance is an important factor to 
reveal the actual performance of ML clas-
sifiers. In the case of significant imbalance, 
the results might be misleading. To deal 
with this problem, over-sampling and un-
der-sampling techniques can be used. One 
of the commonly-used and accepted tech-
niques for balancing the classes is synthetic 
minority over-sampling technique (SMOTE) 
(56), which creates new and similar instanc-
es from the minority class that are not the 
exact replications of the actual instances.

Dimension reduction
Radiomic approaches generally lead to 

high-dimensionality, meaning that they 
produce a very large number of features 
to be dealt with. It is a common practice to 
bring the high-dimensionality to lower lev-
els to optimize the classifier performance, 
which is basically called dimension reduc-
tion (57). The dimension reduction can be 
done using different approaches such as 
feature reproducibility analysis (58), collin-
earity analysis (9), algorithm-based feature 
selection (57, 59), and cluster analysis. 

Feature reproducibility analysis should 
be done for evaluation of the features that 
are sensitive to segmentation variabilities 
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Figure 3. a–c. Different image types for radiomic feature extraction: (a), original image; (b), filtered image; (c), wavelet-transformed images. 
Representative CT and MRI images in Fig. 2 and Fig. 3 are obtained from the Cancer Imaging Archive (TCIA), specifically from the collections of TCGA-KIRC 
(72, 73) and LGG-1p19qDeletion (73–75), which are publicly and freely available.  

a b c

Table 1. Examples of traditional radiomic features

Feature categories Example radiomic features

Size Area

Volume

Maximum 3D diameter

Major axis length

Minor axis length

Surface area

Shape Elongation

Flatness

Sphericity

Spherical disproportion

First-order texturea Energy

Entropy

10th percentile

90th percentile

Skewness

Kurtosis

Second-order textureb Gray level co-occurrence matrix

Gray level run length matrix

Gray level size zone matrix

High-order texturec Autoregressive model

Haar wavelet

aFirst-order features describe the distribution of intensity within the segmentation. bSecond-order features 
describe the statistical relationships between pixels or voxels. cHigh-order features are usually based on matrices 
that consider relationships between three or more pixels or voxels.
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(58), particularly the segmentation tasks 
that need human intervention (10). Fur-
thermore, if possible, this analysis should 
be extended to evaluate the influence of 
the different acquisition protocols (60–62). 
The goal of the reproducibility analysis is 
to reduce the dimension by excluding the 
features with relatively poor reproducibility. 
One of the most common statistical tools 
for this analysis is the intra-class correlation 
coefficient (ICC) (63). There are different 
types of ICC that need to be considered in 
the analysis (63).

Collinearity analysis is another plausible 
way of dimension reduction because a very 
large number of the features have simi-
lar information and the extent of which is 
called the strength of collinearity (64). Pear-
son’s correlation coefficient can be used 
to determine redundant features, in other 
words, the collinear features. If a pair of ra-

diomic features had high collinearity, the 
one having the highest collinearity with the 
others should be excluded from the analy-
sis. Of note, there are also some algorithms 
for this purpose that selects features based 
on the collinearity status and maximum rel-
evance to the classes, for instance, correla-
tion-based feature selection algorithm (59). 
These algorithms are useful because it re-
duces the workload in dimension reduction 
by doing two techniques at the same time, 
that is, collinearity analysis and feature se-
lection.

The most widely used dimension reduc-
tion technique is algorithm-based feature 
selection (57). There are various algorithms 
with different functions such as least abso-
lute shrinkage and selection operator (65), 
correlation-based feature selection algo-
rithm (59), ReliefF (66), and Gini index (67). 
The researchers should experiment with 
these algorithms for achieving the best re-
sults.

The most confusing issue in dimension 
reduction is the final number of features 
that should be achieved. Although there is 
no guideline about this, it would be good 
to reduce the total number of features at 
least to one-tenth of the total labeled data. 
However, authors also think that although 
it is better to keep the number of features 
as low as possible, it should not be a major 
concern as long as they are validated on the 

independent external data with a satisfying 
performance.

AI-based statistical analysis

Requirements before an AI initiative
There are certain musts that need to be 

taken care of before an AI initiative: (i), con-
sistent data; (ii), well curation of the data; 
(iii), expert-driven processing of the data; 
and (iv) a valid clinical problem or problems 
to be answered by the AI.

Sample size is also a significant issue to 
be considered before an AI-based analysis. 
Although it is usual to encounter AI or ML-
based studies with a very small number of 
patients in the literature, the radiologists 
should be aware that the sample size is an 
important factor to avoid some problems 
in model fitting (Fig. 4) and to improve the 
generalizability on unseen data. Particular-
ly for very complex algorithms like deep 
learning, there is absolute need of massive 
amount of data. Nonetheless, in case of lim-
ited or small data, it should be known that 
there are some well-known augmentation 
techniques (e.g., image transformation, 
synthetic minority over-sampling) to be 
considered as well.

The perception of AI and its training is 
underestimated by many others in the 
field. In contrast to the AI systems de-
signed for the distinction of daily life pic-
tures, this task is a little bit more difficult in 
the field of medicine. Because a nonpro-

Figure 4. Simplified illustration of the model 
fitting spectrum. Under-fitting (blue dashed-line) 
and over-fitting (green dashed-line) are common 
problems to be solved to create more optimally-
fitted (red dashed-line) and generalizable 
models that are useful on unseen or new data. 
Under-fitting corresponds to the models having 
poor performance on both training and test 
data. In general, the under-fitting problem 
is not discussed because it is evident in the 
evaluation of performance metrics. Over-fitting, 
on the other hand, refers to the models having 
an excellent performance in training data, but 
very poor performance on test data. In models 
with over-fitting, the algorithm learns both the 
relevant data and the noise that is the primary 
reason of the over-fitting. In reality, all data sets 
have noise to some extent. However, in case 
of small data, the effect of the noise could be 
much more evident. To reduce the over-fitting, 
possible steps would be to expand the data 
size, to use data augmentation techniques, 
to utilize architectures that generalize well, 
to use regularization techniques (e.g., L1-L2 
regularizations and drop-out), and to reduce 
to the complexity of the architecture or to use 
less complex classification algorithms. Black and 
orange circles represent different classes.

Figure 5. Over-simplified illustration of k-nearest 
neighbors. This machine learning algorithm 
classifies the unknown objects or instances 
(blue triangle) by assigning them to the similar 
objects of the classes (orange vs. black circles) 
based on the number of neighbors. For instance, 
considering 3-nearest neighbors, the class 
represented with black circles outnumbers the 
other class (orange circles) so that the unknown 
object is assigned to the class represented 
with black circles. On the other hand, in case of 
5-nearest neighbors, it is assigned to the class 
with orange circles because the number of the 
instances in this class outnumbers the one with 
black circles.

Figure 6. Over-simplified illustration of naive 
Bayes in a probabilistic space. Naive Bayes is 
a probabilistic machine learning algorithm 
and simply based on the strong (naive) 
independence among the predictor variables 
(or features). Also, this algorithm assumes that 
all features equally contribute to the outcome 
or class prediction. Black and orange circles 
represent different classes. Black and orange 
lines represent different probability levels for the 
instances in different classes.
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Table 2. Checklist of the key features that need to be considered and transparently reported in AI-based radiomic studies

Study parts Key features

Baseline study characteristics Nature (Retrospective/Prospective)

Unmet need for radiomics

Sample size with details of classes

Data source (Single/Multi-institutional/Public)

Data curation by experts 

Data overlap

Eligibility criteria

Scanning protocol Acquisition protocol

Processing protocol

Preprocessing Pixel or voxel resampling 

Discretization 

Normalization 

Bias field correction

Different image types

Registration

Segmentation Manual/Semi-automated/Full-automated

2D/3D/a few slice-based

Excluded/Included regions

Feature extraction Software details

Feature types

References for equations

Different image types (Original/Filtered/Transformed)

Reliability analysis Reproducibility analysis to exclude features with poor reproducibility

      • Segmentation variability

      • Protocol differences

Data handling Randomization

Normalization

Standardization

Class balance

Data augmentation 

Collinearity analysis

Feature selection

AI-based statistical analysis Adequacy of sample size considering complexity of AI algorithm

Algorithm parameters

Experiments with different algorithms

Validation technique

Precautions for over- and under-fitting

Details for separation of feature selection and model validation

Different performance metrics

Statistical comparison of classification performance

AI, artificial intelligence; 2D, two-dimensional; 3D, three-dimensional.
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fessional or layperson cannot provide re-
liable processed data for training, experts, 
in other words, good radiologists and par-
ticularly dedicated ones are needed.

Model development
Model development can be done using 

various algorithms. The most common al-
gorithms are k-nearest neighbors (Fig. 5), 
naive Bayes (Fig. 6), logistic regression (Fig. 
7), support vector machine (Fig. 8), decision 
tree (Fig. 9a), random forest (Fig. 9b), neural 
networks, and deep learning (Fig. 10) (18). 
These algorithms can also be combined with 
meta-classifiers or ensemble techniques 
like adaptive boosting and bootstrap ag-
gregation to enhance generalizability (10). 
Furthermore, there are also other ensem-
ble learning techniques that are composed 
of more than one algorithm, particularly 
weak classifiers like k-nearest neighbors, 
naive Bayes, and C4.5 tree algorithms (68). 
Although the selection of the algorithm 
seems to be arbitrary in the literature, the 
best practice would be the selection of the 
algorithm with multiple experiments.

Validation
Nowadays, radiomics is considered a 

mere research area. In order to be accept-
ed in the clinical arena, the results need 
to be validated using independent data 
sets, preferably using data from a different 
institution (1, 69). Hence, the most valu-
able strategy for the validation of models 
is considered the independent external 
validation. However, in small scale pilot or 
preliminary works, it is not always possible 
to have such independent validation data. 
In such cases, internal validation tech-
niques can be used. The most common 
internal validation techniques that can be 
encountered in the literature are k-fold, 
leave-one-out cross-validation, and hold-
out. In addition, there are much more so-

phisticated techniques such as random 
subsampling, bootstrap cross-validation, 
and nested cross-validation. Widely used 
validation techniques are simply present-
ed in Fig. 11 with a didactic approach. Se-
lection of the cross-validation technique 
mostly depends on the need and capabil-
ity of the performer in the software along 
with the specifications of the hardware 
used. The most important problem in in-
ternal validation that must be considered 
is the possible leakage of the feature se-
lection algorithm in the whole data, which 
might lead to overly optimistic results. For 
creating such unseen data sets, although 
the hold-out technique seems to be the 
most appropriate internal validation 
method, there is also nested cross-valida-
tion technique that is primarily used for 
this purpose and might give similar esti-
mates to an independent validation (70).

Performance evaluation
Performance evaluation of the classifica-

tions is generally done using the area under 
the receiver operating characteristic curve 
(AUC) (39). It should be kept in mind that 
AUC might be a poor performance evalua-
tor if the data set has a class imbalance. For 
this reason, other performance metrics like 
accuracy, sensitivity, specificity, precision, 
recall, F1 measure, and Matthews correla-
tion coefficient should be supplied for fur-
ther assessment.

Comparison of the validation performance 
of the AI algorithms can be done by conven-
tional statistical methods (71). Depending 
on the assumptions of the methods and the 
number of the classifiers, commonly used 
statistical tools for comparisons are student 

Figure 8. Over-simplified illustrations of support vector machine. In simple terms, this algorithm 
transforms the original data (left illustration) to a different space (right illustration) to develop 
optimal plane or vector (red line) that separates the classes. Black and orange circles represent 
different classes.

Figure 9. a, b. Over-simplified illustrations of 
decision tree and random forest. In panel (a), 
decision tree simply creates the most accurate 
and simple decision points in classification of 
the instances, providing the most interpretable 
models for the humans; x, z, and w represent 
features. In panel (b), to increase the stability and 
generalizability of the classifications, decision 
tree algorithm can be iterated several times 
with various methods. One of the well-known 
examples is the random forest classifier.

a

b

Figure 7. Over-simplified illustration of logistic 
regression. Even though many extensions of 
the logistic regression exist, this algorithm 
simply uses the logistic function to classify the 
instances to the binary classes. Black and orange 
circles represent different classes.



t-test, Wilcoxon signed-rank test, analysis of 
variance, Friedman test, and so on. In mul-
tiple comparisons, the multiplicity problem 
needs to be addressed. The best performing 
and stable classifier or classifiers are generally 
selected for the clinical application of interest. 

Final recommendations
Radiomics and AI are vast fields with 

their wide range of different methodologic 
aspects. This variety leads to a lack of con-
sensus in many steps, which is a challenge 
that needs to be overcome in the near fu-
ture. In Table 2, the authors recommend 
using a checklist of the key features that 
need to be at least considered and transpar-
ently reported in future AI-based radiomic 
works. Although it is not possible to cover 
all aspects of radiomics and AI in a review 
article, we believe the key features included 
in this paper will be helpful for researchers, 
reviewers, and the future of the radiomics.  
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